Layered wheels

9th Slovenian International Conference on Graph Theory Bled, Slovenia, June 23 - June 29, 2019

Dewi Sintiari, joint work with Nicolas Trotignon

Introduction

Even-hole-free graphs (EHF graphs)

Some terminology

- C HEREDITARY if C is closed under taking induced subgraphs
- G CONTAINS H if H is isomorphic to an induced subgraph of G
- G is H-FREE if it does not contain H
- *G* is \mathcal{F} -FREE if it is *H*-free, $\forall H \in \mathcal{F}$
- HOLE = induced cycle of length ≥ 4
- EVEN HOLE = hole of even length
- G is EVEN-HOLE-FREE if G contains no even hole

Introduction

Motivation of the study of EHF graphs

- initially related to the attempt of proving Strong Perfect Graph Conjecture
- it is structurally similar to PERFECT graphs (*G* is perfect if $\chi(H) = \omega(H)$, for any *H* induced subgraph of *G*)
 - SPGT : G is perfect if and only if G is Berge graph (= no odd hole + no odd antihole)
 - even-hole-free = no even hole + no antihole of length \geq 6
- its relation to β -PERFECT graphs (introduced by Markossian, Gasparian, Reed, '96)
 - G is β -perfect if $\chi(H) = \beta(H)$, for any induced subgraph H,

where $\beta(G) = \max{\delta(H) + 1}$; $H \subseteq_{ind} G$ and $\delta(G) = \min$ -degree of vertices in G

• trivial observation: $\chi(G) \leq \beta(G)$

Introduction

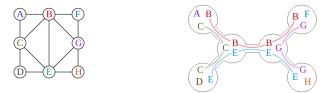
More about EHF graphs

- Decomposition thm and recognition algorithm for EHF graphs are known [Conforti, Cornuéjols, Kapoor, and Vušković, 2002]
- Many graph problems are open (ex. computing χ, α)
- What to do?
 - What to study? What to exclude?
 - Bounding parameters? for ex. tree-width, clique-width, ...

Remark. For more about EHF graphs: see the survey of Kristina Vušković.

Graph parameters

Tree decomposition & Tree-width



figures taken from https://commons.wikimedia.org/wiki/User:David_Eppstein/Gallery

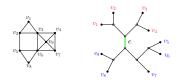
• The tree-width of G is a parameter measuring how far is a graph G from a tree

A *tree decomposition* of *G* is a tree \mathcal{T} , whose each tree node is a bag $B \subseteq V(G)$ s.t.

- 1. every vertex of G is in some bag
- 2. every edge is contained in at least one bag
- 3. for every vertex $v \in V(G)$, the set of bags containing v is connected in T
- The width ${\mathcal T}$ is the size of the largest bag minus 1
- The tree-width of G is the width of the optimal tree decomposition

Graph parameters

Rank decomposition & Rank-width



Hlineny et. al. Width parameters beyond tree-width and their applications, The Computer Journal (51), 2008

• The rank-width of G is a parameter measuring the connectivity of G

Rank decomposition is a cubic tree \mathcal{T} , with a bijection $\nu : V(G) \rightarrow \mathcal{L}(\mathcal{T})$

- width(e) : cut-rank of the adjacency matrix of the separation
- $width(\mathcal{T})$: max{width(e) | $e \in E(\mathcal{T})$ }
- rank-width of G is the width of the optimal rank decomposition

Motivation

TRIANGLE-FREE EHF GRAPHS

Theorem [?]

Every (even hole, triangle)-free graph has tree-width at most 5

Motivation

TRIANGLE-FREE EHF GRAPHS

Theorem [?]

Every (even hole, triangle)-free graph has tree-width at most 5

 How about K₄-free, EHF graphs? (asked by Cameron, Chaplick, Hoàng)

Motivation

TRIANGLE-FREE EHF GRAPHS

Theorem [?]

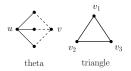
Every (even hole, triangle)-free graph has tree-width at most 5

- How about K₄-free, EHF graphs? (asked by Cameron, Chaplick, Hoàng)
- ✓ No; layered wheel is a counter example

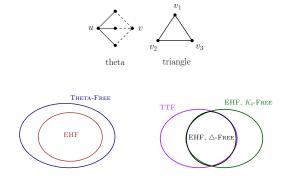
PART 1

Layered wheel: construction and properties

(Theta, triangle)-free graphs (TTF)



(Theta, triangle)-free graphs (TTF)



TTF graphs and EHF K₄-free graphs

TTF graphs and EHF K_4 -free graphs

Structure of 2-wheels with non-adjacent centers:

- In EHF, TRIANGLE-FREE : always nested
- In TTF : nested, except the cube
- In EHF, K₄-FREE : nested, with several exceptions

Layered wheel $G_{\ell,k}$, $\ell \geq 1, k \geq 4$

(THETA, TRIANGLE)-FREE LAYERED WHEEL

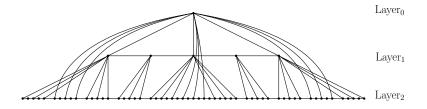
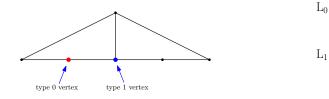


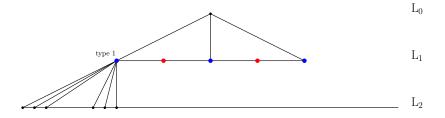
Figure: TTF Layered wheel G2,4

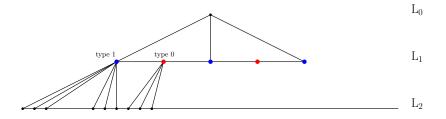
root

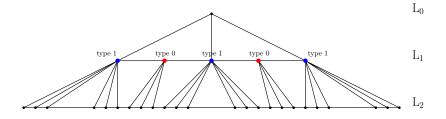
 $G(\ell, k)$, with $\ell = 2$ and k = 4

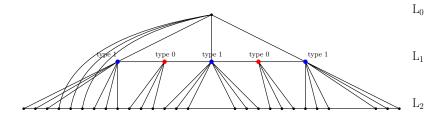
 L_0

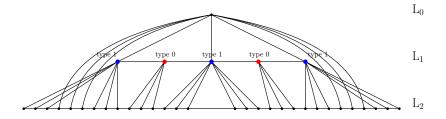


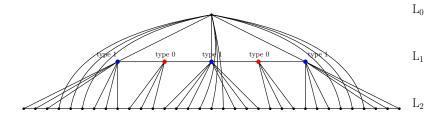


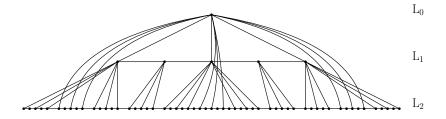








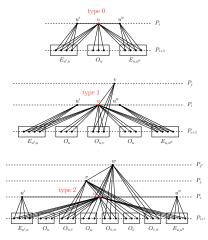




Remark. For $\ell \ge 2$, $k \ge 5$, K_4 -free, EHF layered wheel $G_{\ell,k}$ contains triangle.

Remark. For $\ell \ge 2$, $k \ge 5$, K_4 -free, EHF layered wheel $G_{\ell,k}$ contains triangle.

- The first two layers are similar as for TTF layered wheel
- Three types of vertices in $G_{\ell,k}$:



Layered wheel contains no theta

Remark

• $G_{\ell,k}$ is full of spiders

Layered wheel contains no theta

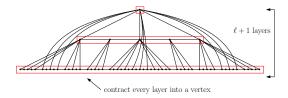
Remark

• $G_{\ell,k}$ is full of spiders

• but... it contains no theta

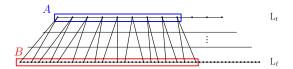
Tree-width of layered wheel

• the **tree-width** of $G_{\ell,k}$ is at least ℓ



Rank-width of layered wheel

• the rank-width of $G_{\ell,k}$ is at least ℓ



PART 2

What to do?

Bounding the tree-width

- The tree-width of TTF graphs and EHF, K_4 -free graphs are unbounded
- Important remark: to reach tree-width $\ell,$ our construction needs at more then 3^ℓ vertices.

Bounding the tree-width

- The tree-width of TTF graphs and EHF, K₄-free graphs are unbounded
- Important remark: to reach tree-width $\ell,$ our construction needs at more then 3^ℓ vertices.

Lemma 1. $tw(G_{\ell,k}) = O(\log(|V(G_{\ell,k})|))$ *Proof.*

- 1. $|V(G_{\ell,k})| \gg 3^{\ell}$
- 2. $tw(G_{\ell,k}) \leq pw(G_{\ell,k}) \leq 2\ell$

Proof of Lemma 1

- 1. $|V(G_{\ell,k})| \gg 3^{\ell}$
 - Every vertex in layer L_i has at least 3^{j-i} neighbors in layer L_j

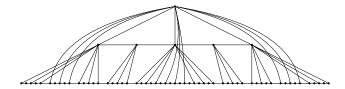


Figure: TTF layered wheel G2,4

Proof of Lemma 1

- 2. $tw(G_{\ell,k}) \leq 2\ell$
 - ▶ We prove a stronger result: the *path-width* of layered wheel is at most 2ℓ.
 - ► $tw(G_{\ell,k}) \leq pw(G_{\ell,k}) \leq \omega(\mathcal{I}) 1$, where \mathcal{I} is an interval graph containing $G_{\ell,k}$ as a subgraph

Proof of Lemma 1

- 2. $tw(G_{\ell,k}) \leq 2\ell$
 - ▶ We prove a stronger result: the *path-width* of layered wheel is at most 2ℓ.
 - ► $tw(G_{\ell,k}) \leq pw(G_{\ell,k}) \leq \omega(\mathcal{I}) 1$, where \mathcal{I} is an interval graph containing $G_{\ell,k}$ as a subgraph

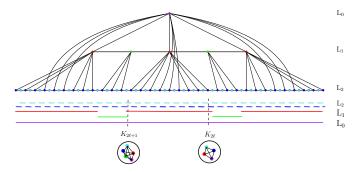


Figure: Interval graph \mathcal{I} that contains $G_{2,4}$

To sum up...

Theorem 1. For every integers $\ell \ge 1$ and $k \ge 3$ there exists a graph $G_{\ell,k}$ such that:

- it is theta-free and it has girth at least k (so, is triangle-free when $k \ge 4$).
- $\ell \leq \operatorname{rw}(G_{\ell,k}) \leq \operatorname{tw}(G_{\ell,k}) \leq \operatorname{pw}(G_{\ell,k}) \leq 2\ell \leq 2^{\ell} \leq |V(G_{\ell,k})|.$

To sum up...

Theorem 1. For every integers $\ell \ge 1$ and $k \ge 3$ there exists a graph $G_{\ell,k}$ such that:

- it is theta-free and it has girth at least k (so, is triangle-free when $k \ge 4$).
- $\ell \leq \operatorname{rw}(G_{\ell,k}) \leq \operatorname{tw}(G_{\ell,k}) \leq \operatorname{pw}(G_{\ell,k}) \leq 2\ell \leq 2^{\ell} \leq |V(G_{\ell,k})|.$

Theorem 2. For every integers $\ell \ge 1$ and $k \ge 3$ there exists a graph $G_{\ell,k}$ such that:

- it is (even hole, K_4)-free and every hole in the graph has length at least *k*.
- $\ell \leq \operatorname{rw}(G_{\ell,k}) \leq \operatorname{tw}(G_{\ell,k}) \leq \operatorname{pw}(G_{\ell,k}) \leq 2\ell \leq 2^{\ell} \leq |V(G_{\ell,k})|.$

Conjecture 1. $\exists c$ constant such that for any TTF graph *G*, we have

 $tw(G) \leq c \log |V(G)|.$

Conjecture 2. $\exists c$ constant such that for any K_4 -free EHF graph G, we have $tw(G) \leq c \log |V(G)|$.

Conjecture 1. $\exists c$ constant such that for any TTF graph *G*, we have

 $tw(G) \leq c \log |V(G)|.$

Conjecture 2. $\exists c$ constant such that for any K_4 -free EHF graph G, we have $tw(G) \leq c \log |V(G)|.$

 $\checkmark~$ If so, many graph problems are poly-time solvable.

Bounding the tree-width

Partial result

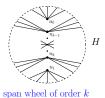
span wheel of order \boldsymbol{k}

SPAN-WHEEL-NUMBER $\zeta(G)$:

the order of the largest span wheel in G

Bounding the tree-width

Partial result



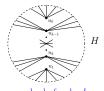
SPAN-WHEEL-NUMBER $\zeta(G)$:

the order of the largest span wheel in G

Theorem 1. Any (theta, triangle)-free graph has tree-width $O(\zeta(G)^{o(1)})$.

Bounding the tree-width

Partial result



SPAN-WHEEL-NUMBER $\zeta(G)$:

the order of the largest span wheel in G

span wheel of order \boldsymbol{k}

Theorem 1. Any (theta, triangle)-free graph has tree-width $O(\zeta(G)^{o(1)})$.

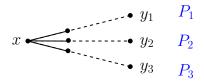
Theorem 2. Any (even-hole, K_4 , *pyramid*)-free graph has tree-width $O(\zeta(G)^9)$.

Remark. For any graph *G*, we have $\zeta(G) \leq \frac{n-2}{2}$

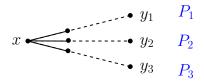
Proof sketch of Theorem 1 and Theorem 2

- Consider G TTF or K₄-free EHF
- If G has huge tree-width then either
 - 1. it contains a big clique
 - 2. it has a minimal separator of large size
- 1 is not the case (we are in triangle-free or K_4 -free)
- 2 cannot be the case (because if it was then *G* would contain a span wheel of large order)

An *m*-SPIDER, $m \ge 1$ is a graph consists of three internally-vertex-disjoint chordless paths P_1 , P_2 , P_3 , each of length *m*

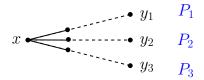


An *m*-SPIDER, $m \ge 1$ is a graph consists of three internally-vertex-disjoint chordless paths P_1 , P_2 , P_3 , each of length *m*



Lemma. Let *G* be a triangle-free graph. Any *span-wheel* in *G* of at least $\lfloor \frac{3m}{2} \rfloor$ centers contains an *m*-spider.

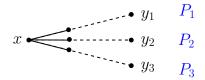
An *m*-SPIDER, $m \ge 1$ is a graph consists of three internally-vertex-disjoint chordless paths P_1 , P_2 , P_3 , each of length *m*



Lemma. Let *G* be a triangle-free graph. Any *span-wheel* in *G* of at least $\lfloor \frac{3m}{2} \rfloor$ centers contains an *m*-spider.

Theorem 3. Let $m \ge 1$. There exists a constant *c* such that any (theta, triangle, *m*-spider)-free graph *G* has tree-width $O(m^{o(1)})$.

An *m*-SPIDER, $m \ge 1$ is a graph consists of three internally-vertex-disjoint chordless paths P_1 , P_2 , P_3 , each of length *m*



Lemma. Let *G* be a triangle-free graph. Any *span-wheel* in *G* of at least $\lfloor \frac{3m}{2} \rfloor$ centers contains an *m*-spider.

Theorem 3. Let $m \ge 1$. There exists a constant *c* such that any (theta, triangle, *m*-spider)-free graph *G* has tree-width $O(m^{o(1)})$.

Remark:

- Theorem 3 is best possible in some sense
- It is conjectured that: α is poly-time computable in **spider-free** graphs
- it is conjectured that: α is poly-time computable in **theta-free** graphs

Conjecture

If *G* has huge tree-width, then *G* must contain as an induced subgraph:

- a big clique
- a big complete bipartite graph
- a big wall, possibly subdivided
- a big line graph of a subdivided wall
- · layered wheels or variation of them

Conjecture

If *G* has huge tree-width, then *G* must contain as an induced subgraph:

- a big clique
- a big complete bipartite graph
- a big wall, possibly subdivided
- a big line graph of a subdivided wall
- · layered wheels or variation of them

The End

