Layered wheels

$9^{\text {th }}$ Slovenian International Conference on Graph Theory Bled, Slovenia, June 23 - June 29, 2019

Dewi Sintiari, joint work with Nicolas Trotignon

Introduction

Even-hole-free graphs (EHF graphs)

Some terminology

- \mathcal{C} HEREDITARY if \mathcal{C} is closed under taking induced subgraphs
- G contains H if H is isomorphic to an induced subgraph of G
- G is H-free if it does not contain H
- G is \mathcal{F}-free if it is H-free, $\forall H \in \mathcal{F}$
- HOLE $=$ induced cycle of length ≥ 4
- EVEN HOLE = hole of even length
- G is Even-Hole-Free if G contains no even hole

Introduction

Motivation of the study of EHF graphs

- initially related to the attempt of proving Strong Perfect Graph Conjecture
- it is structurally similar to PERFECT graphs (G is perfect if $\chi(H)=\omega(H)$, for any H induced subgraph of G)
- SPGT : G is perfect if and only if G is Berge graph (= no odd hole + no odd antihole)
- even-hole-free $=$ no even hole + no antihole of length ≥ 6
- its relation to β-PERFECT graphs (introduced by Markossian, Gasparian, Reed, '96)
- G is β-perfect if $\chi(H)=\beta(H)$, for any induced subgraph H,
where $\beta(G)=\max \left\{\delta(H)+1 ; H \subseteq_{\text {ind }} G\right\}$ and $\delta(G)=$ min-degree of vertices in G
- trivial observation: $\chi(G) \leq \beta(G)$

> Odd-Hole-Free

Even-Hole-Free

Introduction

More about EHF graphs

- Decomposition thm and recognition algorithm for EHF graphs are known [Conforti, Cornuéjols, Kapoor, and Vušković, 2002]
- Many graph problems are open (ex. computing χ, α)
- What to do?
- What to study? What to exclude?
- Bounding parameters? for ex. tree-width, clique-width, ...

Remark. For more about EHF graphs: see the survey of Kristina Vušković.

Graph parameters

Tree decomposition \& Tree-width

figures taken from https://commons.wikimedia.org/wiki/User:David_Eppstein/Gallery

- The tree-width of G is a parameter measuring how far is a graph G from a tree

A tree decomposition of G is a tree \mathcal{T}, whose each tree node is a bag $B \subseteq V(G)$ s.t.

1. every vertex of G is in some bag
2. every edge is contained in at least one bag
3. for every vertex $v \in V(G)$, the set of bags containing v is connected in \mathcal{T}

- The width \mathcal{T} is the size of the largest bag minus 1
- The tree-width of G is the width of the optimal tree decomposition

Graph parameters

Rank decomposition \& Rank-width

$$
\operatorname{width}(e)=\operatorname{rank} \begin{gathered}
v_{1} \\
v_{2}
\end{gathered} v_{3} v_{4}+\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
v_{6} \\
v_{7} \\
v_{8} \\
v_{9}
\end{array}\left[\begin{array}{cccc}
0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1
\end{array}\right]=3\right.
$$

Hlineny et. al. Width parameters beyond tree-width and their applications, The Computer Journal (51), 2008

- The rank-width of G is a parameter measuring the connectivity of G

Rank decomposition is a cubic tree \mathcal{T}, with a bijection $\nu: V(G) \rightarrow \mathcal{L}(\mathcal{T})$

- width (e) : cut-rank of the adjacency matrix of the separation
- width $(\mathcal{T}): \max \{\operatorname{width}(e) \mid e \in E(\mathcal{T})\}$
- rank-width of G is the width of the optimal rank decomposition

Motivation

Triangle-Free EHF Graphs

Theorem [?]
Every (even hole, triangle)-free graph has tree-width at most 5

Motivation

Triangle-Free EHF Graphs

Theorem [?]
Every (even hole, triangle)-free graph has tree-width at most 5

- How about K_{4}-free, EHF graphs?
(asked by Cameron, Chaplick, Hoàng)

Motivation

Triangle-Free EHF Graphs

Theorem [?]
Every (even hole, triangle)-free graph has tree-width at most 5

- How about K_{4}-free, EHF graphs?
(asked by Cameron, Chaplick, Hoàng)

K_{4}
\checkmark No; layered wheel is a counter example

PART 1

Layered wheel: construction and properties

(Theta, triangle)-free graphs (TTF)

(Theta, triangle)-free graphs (TTF)

theta

TTF graphs and EHF K_{4}-free graphs

wheel

2-wheel

TTF graphs and EHF K_{4}-free graphs

wheel

2-wheel

Structure of 2-wheels with non-adjacent centers:

- In EHF, Triangle-free : always nested
- In TTF : nested, except the cube
- In EHF, K_{4}-Free : nested, with several exceptions

several exceptions

Layered wheel $G_{\ell, k}, \ell \geq 1, k \geq 4$

(Theta, Triangle)-Free Layered Wheel

Figure: TTF Layered wheel $G_{2,4}$

TTF layered wheel construction

$$
G(\ell, k), \text { with } \ell=2 \text { and } k=4
$$

TTF layered wheel construction

L_{0}
L_{1}

$$
G(\ell, k), \text { with } \ell=2 \text { and } k=4
$$

TTF layered wheel construction

$$
G(\ell, k), \text { with } \ell=2 \text { and } k=4
$$

TTF layered wheel construction

$G(\ell, k)$, with $\ell=2$ and $k=4$

TTF layered wheel construction

$G(\ell, k)$, with $\ell=2$ and $k=4$

TTF layered wheel construction

$G(\ell, k)$, with $\ell=2$ and $k=4$

TTF layered wheel construction

$G(\ell, k)$, with $\ell=2$ and $k=4$

TTF layered wheel construction

$G(\ell, k)$, with $\ell=2$ and $k=4$

TTF layered wheel construction

$G(\ell, k)$, with $\ell=2$ and $k=4$

TTF layered wheel construction

$G(\ell, k)$, with $\ell=2$ and $k=4$

EHF layered wheel construction

Remark. For $\ell \geq 2, k \geq 5, K_{4}$-free, EHF layered wheel $G_{\ell, k}$ contains triangle.

EHF layered wheel construction

Remark. For $\ell \geq 2, k \geq 5, K_{4}$-free, EHF layered wheel $G_{\ell, k}$ contains triangle.

- The first two layers are similar as for TTF layered wheel
- Three types of vertices in $G_{\ell, k}$:

Layered wheel contains no theta

Remark

- $G_{\ell, k}$ is full of spiders

Layered wheel contains no theta

Remark

- $G_{\ell, k}$ is full of spiders

- but... it contains no theta

Tree-width of layered wheel

- the tree-width of $G_{\ell, k}$ is at least ℓ

Rank-width of layered wheel

- the rank-width of $G_{\ell, k}$ is at least ℓ

PART 2

What to do?

Bounding the tree-width

- The tree-width of TTF graphs and EHF, K_{4}-free graphs are unbounded
- Important remark: to reach tree-width ℓ, our construction needs at more then 3^{ℓ} vertices.

Bounding the tree-width

- The tree-width of TTF graphs and EHF, K_{4}-free graphs are unbounded
- Important remark: to reach tree-width ℓ, our construction needs at more then 3^{ℓ} vertices.

Lemma 1. $\operatorname{tw}\left(G_{\ell, k}\right)=O\left(\log \left(\left|V\left(G_{\ell, k}\right)\right|\right)\right)$
Proof.

1. $\left|V\left(G_{\ell, k}\right)\right|>3^{\ell}$
2. $t w\left(G_{\ell, k}\right) \leq p w\left(G_{\ell, k}\right) \leq 2 \ell$

Proof of Lemma 1

1. $\left|V\left(G_{\ell, k}\right)\right| \gg 3^{\ell}$

- Every vertex in layer L_{i} has at least 3^{j-i} neighbors in layer L_{j}

Figure: TTF layered wheel $G_{2,4}$

Proof of Lemma 1

2. $t w\left(G_{\ell, k}\right) \leq 2 \ell$

- We prove a stronger result: the path-width of layered wheel is at most 2ℓ.
- $t w\left(G_{\ell, k}\right) \leq p w\left(G_{\ell, k}\right) \leq \omega(\mathcal{I})-1$, where \mathcal{I} is an interval graph containing $G_{\ell, k}$ as a subgraph

Proof of Lemma 1

2. $t w\left(G_{\ell, k}\right) \leq 2 \ell$

- We prove a stronger result: the path-width of layered wheel is at most 2ℓ.
- $t w\left(G_{\ell, k}\right) \leq p w\left(G_{\ell, k}\right) \leq \omega(\mathcal{I})-1$, where \mathcal{I} is an interval graph containing $G_{\ell, k}$ as a subgraph

Figure: Interval graph \mathcal{I} that contains $G_{2,4}$

To sum up...

Theorem 1. For every integers $\ell \geq 1$ and $k \geq 3$ there exists a graph $G_{\ell, k}$ such that:

- it is theta-free and it has girth at least k (so, is triangle-free when $k \geq 4$).
- $\ell \leq r w\left(G_{\ell, k}\right) \leq t w\left(G_{\ell, k}\right) \leq p w\left(G_{\ell, k}\right) \leq 2 \ell \leq 2^{\ell} \leq\left|V\left(G_{\ell, k}\right)\right|$.

To sum up...

Theorem 1. For every integers $\ell \geq 1$ and $k \geq 3$ there exists a graph $G_{\ell, k}$ such that:

- it is theta-free and it has girth at least k (so, is triangle-free when $k \geq 4$).
- $\ell \leq r w\left(G_{\ell, k}\right) \leq t w\left(G_{\ell, k}\right) \leq p w\left(G_{\ell, k}\right) \leq 2 \ell \leq 2^{\ell} \leq\left|V\left(G_{\ell, k}\right)\right|$.

Theorem 2. For every integers $\ell \geq 1$ and $k \geq 3$ there exists a graph $G_{\ell, k}$ such that:

- it is (even hole, K_{4})-free and every hole in the graph has length at least k.
- $\ell \leq r w\left(G_{\ell, k}\right) \leq t w\left(G_{\ell, k}\right) \leq p w\left(G_{\ell, k}\right) \leq 2 \ell \leq 2^{\ell} \leq\left|V\left(G_{\ell, k}\right)\right|$.

Bounding the tree-width

Conjecture 1. $\exists c$ constant such that for any TTF graph G, we have

$$
t w(G) \leq c \log |V(G)|
$$

Conjecture 2. $\exists c$ constant such that for any K_{4}-free EHF graph G, we have

$$
t w(G) \leq c \log |V(G)|
$$

Bounding the tree-width

Conjecture 1. $\exists c$ constant such that for any TTF graph G, we have

$$
t w(G) \leq c \log |V(G)|
$$

Conjecture 2. $\exists c$ constant such that for any K_{4}-free EHF graph G, we have

$$
t w(G) \leq c \log |V(G)|
$$

\checkmark If so, many graph problems are poly-time solvable.

Bounding the tree-width

Partial result

Span-Wheel-Number $\zeta(G)$:
the order of the largest span wheel in G
span wheel of order k

Bounding the tree-width

Partial result

> Span-Wheel-Number $\zeta(G)$:
> the order of the largest span wheel in G
span wheel of order k
Theorem 1. Any (theta, triangle)-free graph has tree-width $O\left(\zeta(G)^{o(1)}\right)$.

Bounding the tree-width

Partial result

> Span-Wheel-Number $\zeta(G)$:
> the order of the largest span wheel in G
span wheel of order k
Theorem 1. Any (theta, triangle)-free graph has tree-width $O\left(\zeta(G)^{o(1)}\right)$.
Theorem 2. Any (even-hole, K_{4}, pyramid)-free graph has tree-width $O\left(\zeta(G)^{9}\right)$.

pyramid

Remark. For any graph G, we have $\zeta(G) \leq \frac{n-2}{2}$

Proof sketch of Theorem 1 and Theorem 2

- Consider G TTF or K_{4}-free EHF
- If G has huge tree-width then either

1. it contains a big clique
2. it has a minimal separator of large size

- 1 is not the case (we are in triangle-free or K_{4}-free)
- 2 cannot be the case (because if it was then G would contain a span wheel of large order)

A consequence

An m-SPIDER, $m \geq 1$ is a graph consists of three internally-vertex-disjoint chordless paths P_{1}, P_{2}, P_{3}, each of length m

A consequence

An m-SPIDER, $m \geq 1$ is a graph consists of three internally-vertex-disjoint chordless paths P_{1}, P_{2}, P_{3}, each of length m

Lemma. Let G be a triangle-free graph. Any span-wheel in G of at least $\left\lfloor\frac{3 m}{2}\right\rfloor$ centers contains an m-spider.

A consequence

An m-SPIDER, $m \geq 1$ is a graph consists of three internally-vertex-disjoint chordless paths P_{1}, P_{2}, P_{3}, each of length m

Lemma. Let G be a triangle-free graph. Any span-wheel in G of at least $\left\lfloor\frac{3 m}{2}\right\rfloor$ centers contains an m-spider.

Theorem 3. Let $m \geq 1$. There exists a constant c such that any (theta, triangle, m-spider)-free graph G has tree-width $O\left(m^{0(1)}\right)$.

A consequence

An m-SPIDER, $m \geq 1$ is a graph consists of three internally-vertex-disjoint chordless paths P_{1}, P_{2}, P_{3}, each of length m

Lemma. Let G be a triangle-free graph. Any span-wheel in G of at least $\left\lfloor\frac{3 m}{2}\right\rfloor$ centers contains an m-spider.

Theorem 3. Let $m \geq 1$. There exists a constant c such that any (theta, triangle, m-spider)-free graph G has tree-width $O\left(m^{\circ(1)}\right)$.

Remark:

- Theorem 3 is best possible in some sense
- It is conjectured that: α is poly-time computable in spider-free graphs
- it is conjectured that: α is poly-time computable in theta-free graphs

Conjecture

If G has huge tree-width, then G must contain as an induced subgraph:

- a big clique
- a big complete bipartite graph
- a big wall, possibly subdivided
- a big line graph of a subdivided wall
- layered wheels or variation of them

Conjecture

If G has huge tree-width, then G must contain as an induced subgraph:

- a big clique
- a big complete bipartite graph
- a big wall, possibly subdivided
- a big line graph of a subdivided wall
- layered wheels or variation of them

The End

